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The problem of the diverging thermal conductivity in one-dimensional~1D! lattices is considered. By
numerical simulations, it is confirmed that the thermal conductivity of the diatomic Toda lattice diverges,
which is the opposite of the current popular belief. Also, the diverging exponent is found to be almost the same
as the FPU chain. It is reconfirmed that the diverging thermal conductivity is universal in 1D systems, where
the total momentum preserves.@S1063-651X~99!50501-1#

PACS number~s!: 05.70.Ln, 44.10.1i, 05.60.2k
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Heat conduction in a one-dimensional lattice is a rat
old problem. Many authors have investigated the property
thermal conductivity in order to understand what ingredie
are essential to the standing of a macroscopic law; that is
Fourier law

^ j &52k¹T, ~1!

wherek is a thermal conductivity. It is well known that in
integrable systems such as harmonic chains or ideal gas
Fourier law is not valid since no temperature gradient
formed @1#, while various numerical simulations of noninte
grable systems show temperature gradients. However,
also found that thermal conductivity of nonintegrable s
tems such as the FPU chain diverge asNa @2,3#, whereN is
the degree of freedom. In other words, thermal conductiv
becomes infinite in the thermodynamic limit.

On the other hand, finite conductivities are seen in so
one-dimensional~1D! nonintegrable systems. Casatiet al.
invented the so-called ding-a-ling model, consisting of alt
nate harmonic oscillators and free particles, and found
the model has finite conductivity@4#. A similar kind of the
model that has finite conductivity is also investigated
Prosen and Robnik@5#. Most recently, Hu, Li, and Zhao
found that the Frenkel-Kontrova model has the finite cond
tivity @6#. In these models, the conductivity converges at
certain value with relatively smallN which does not exceed
PRE 591063-651X/99/59~1!/1~4!/$15.00
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100. This convergence makes apparent the contrast with
Fermi-Pasta-Ulam~FPU! chain, where the conductivity stil
grows even atN.5000 @2,7#. As the common feature o
these systems that have finite conductivity, the external fi
is introduced to confine the movement of each particle. T
Hamiltonian of the systems is represented as

H5(
i

S pi
2

2m
1U~xi 112xi !1V~xi ! D , ~2!

whereV(x) is the external trapping potential. At this poin
one might think that the external field plays the key role
obtaining the finite conductivity@6#. However, the finite con-
ductivity is also obtained for the diatomic Toda lattice~DTL!
@8#, whose Hamiltonian is written as

H5(
i

S pi
2

2mi
1exp~xi 112xi ! D , ~3!

where mi denotes the mass of alternate two different p
ticles. The DTL has no external potential that is differe
from Eq.~2!. It is still unknown what is responsible for finite
conductivity.

Recently, Lepri, Livi, and Politi found that the autocorr
lation function of the total heat current vanishes liket20.6 in
the FPU chain@9#. This implies the divergence of the therm
conductivity as a result of the Green-Kubo formula
R1 ©1999 The American Physical Society
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k5 lim
t→`

lim
V→`

1

VkBT2 E0

t

dt8^J~0!J~ t8!&, ~4!

whereJ(t)5* j (x,t)dx, andV is the volume of the system
Indeed, due to the conservation laws, long-time tails

the correlation functions are quite general results in flu
@10#. The rough explanation is as follows. Hydrodynam
cally, the local heat currentj (x,t) is expressed as

j ~x,t !5h~x,t !v~x,t !2k¹T~x,t !, ~5!

whereh(x,t) and v(x,t) denote local enthalpy density an
local velocity of the fluid, respectively@11#. Since v(x,t)
appears in the first term of Eq.~5!, an autocorrelation func
tion of the total heat current^J(0)J(t)& includes the effect of
the velocity autocorrelation function~VACF! @12#. In the
system where the total momentum is preserved,
asymptotic behavior of the VACF is proportional tot2d/2,
where d is the dimensionality of the system. The
^J(0)J(t)& also decays liket2d/2, which implies the diver-
gence of the integral of Eq.~4! for d<2. In the system where
the total momentum is not preserved, the VACF vanis
much faster than that. For example, in the Lorentz
the VACF decays like2t2d/221 @13#. In those systems the
VACF does not cause the divergence of Eq.~4!. We remark
that the contribution of the second term of Eq.~5! to
^J(0)J(t)& is t2d/221. This term is not responsible for th
diverging conductivity.

Those explanations account for the diverging conductiv
in the FPU chain, and also the finite ones of the mod
where the total momentum does not preserve due to the
ternal field, such as the ding-a-ling model. However, the
planation does not apply to the diatomic Toda lattice, wh
the total momentum is preserved. The fact that the DTL
a finite thermal conductivity has been invoking confusion.
this Rapid Communication, we recheck the result of Ref.@8#
to find out what is really going on in the DTL.

The Hamiltonian of the DTL is given by Eq.~3!. We
perform numerical simulations of the DTL in contact wi
two thermal reservoirs whose temperatures are denoted aT1
andT2 . Note that the choice of models for thermal reservo
is critical, since there might exist the temperature gaps at
extrema of the lattice connecting with the reservoirs.
makes the definition of temperature gradient ambiguous,
cause the system will not obey the assigned boundary
ditions; i.e., temperatures of the thermal reservoirs. Si
thermal conductivity is defined as^ j &/¹T, it is important to
determine¹T exclusively by control parameters. The mod
we adopt here is the thermal wall type@4,14#. When the
particle collides with the wall, it reflects the particle ba
with a new momentump at random. The probability distri
bution function ofp is given by

f~p!5
upu

mkBT
expS 2

p2

2mkBTD . ~6!

The local heat fluxj l(t) is defined as the energy transfer p
unit time from thel th particle to the (l 11)th particle,

j l~ t !5
]U~xl2xl 11!

]xl
v l . ~7!
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The total heat current appearing in the Green-Kubo form
is

J~ t !5(
l 51

N

j l~ t !a, ~8!

wherea is the average distance between two particles. T
average current is then defined as

^ j &5
1

T E
0

T

dt
1

aN
J~ t !. ~9!

Hereafter we fix the mass ratio of the particles to be 0
that is,m2n2152m2n . The temperatures of the thermal re
ervoirs are set to be 100 and 10. Note that all these co
tions are the same as in Ref.@8# except for the reservoir
model. Numerical integration is done by the symplectic
tegrater of the fourth order@15# in order to preserve the sym
plectic structure of the phase space. Note that the dista
between two thermal walls isaN so that the average densit
is fixed regardless of the number of particles. We seta51
andm2n51 for nondimensionization.

First we check the temperature profile. We define the te
perature of thel th site as the long-time average ofmlv l

2

based on the virial theorem. The result is shown in Fig.
Since no gap is seen at the extrema, temperature gradien¹T
becomes (T12T2)/N. We can safely define the thermal co
ductivity as

k5
^ j &N

T12T2
, ~10!

where^ j & is defined by Eq.~9!. The system size dependenc
of the thermal conductivity is shown in Fig. 2. It is clear
seen that the conductivity diverges likeN0.35. The exponent
0.35 is very close to the one for the FPU chain~0.38!. It is
reasonable to consider that the origin of the divergence is
same as the case of the FPU chain, i.e., the long-time ta
the Green-Kubo integrand. We check an autocorrelat
function of the total heat current̂J(0)J(t)&, by taking a
periodic boundary condition instead of thermal walls. T

FIG. 1. Temperature profile formed in the diatomic Toda lattic
The temperatures of the reservoirs are 100 and 10. System sizeN is
1000. The shape of the profile will not change with the increase
N.
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initial condition is chosen within the microcanonical e
semble whose temperature is (T11T2)/2555. Figure 3
clearly shows the long-time tail, which is approximately pr
portional tot20.65 just like the FPU chain. This long-time ta
is the strong evidence for the diverging thermal conductiv
in Fig. 2, and also helps the unified understanding of the h
conduction in 1D lattices.

However, one may think that the temperature differen
adopted here is so large that the linear response theory
not apply. To answer this, we check thermal conductivity
the smaller temperature gradient that is closer to equilibriu
i.e., T155 andT254. The system at this temperature al
shows the divergence ofN0.35 and the long-time tail of
t20.65.

FIG. 2. System size dependence of the thermal conductiv
Circles correspond to the diatomic Toda lattice withT15100 and
T2510. Squares denote diatomic hard spheres of Eq.~11!. Tri-
angles represent another version of the DTL written as Eq.~12!.
The solid line is proportional toN0.35.

FIG. 3. Autocorrelation function of the total heat current wi
the periodic boundary condition. Dashed line is proportional
t20.65. System sizeN is 2000.
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In order to confirm the divergence in the diatomic To
lattice, we also test other versions of the DTL@16#,

H5(
i

pi
2

2mi
1hardcore, ~11!

H5(
i

S pi
2

2mi
1exp~xi2xi 11!1xi 112xi D . ~12!

For thermal reservoirs, we use the thermal wall model
before in the diatomic hard spheres of Eq.~11!. Note that the
thermal reservoir employed in the simulation of Eq.~12! is
the Langevin type,

m1v̇11zv11j1~ t !512exp~x12x2!, ~13!

mNv̇N1zvN1j2~ t !5211exp~xN212xN!, ~14!

where j i(t) denotes the Gaussian white noise.@^j i(t)&50
and ^j i(0)j i(t)&52zkBTid(t).# We setT155 and T254
for both of the models. System size dependences of the t
mal conductivity of these models are shown in Fig. 2. Th
also show the divergence ofN0.33;N0.37.

The result obtained in this Rapid Communication is qu
the opposite of the results of Jackson and Mistriotis@8#. The
keypoint is the formation of the temperature gradient. In R
@8#, the temperature profile has large gaps at the extrem
the lattice so that the real temperature gradient gets sm
thanN/(T12T2). Hence, it is improper to define the therm
conductivity aŝ j &N/(T12T2) as they did. Moreover, since
the size of the gap may depend onN, system size depen
dence of the thermal conductivity measured in that way
not precise.

The existence of the gaps is due to the model of the h
bath. In Ref.@8#, the new momenta are randomly given to t
end particles of the lattice. Although the distribution functio
is the same as ours, i.e., Eq.~6!, the new momenta are give
at finite time steps which is determined randomly from t
uniform distribution. When the average time interval
shorter than the relaxation time of the lattice, the gap
formed. This issue has been partially reported in Refs.@5,7#.
In our models, for instance, the Langevin model represen
by Eqs. ~13! and ~14! yields temperature gaps whenz be-
comes large.

In this Rapid Communication, we have confirmed that t
thermal conductivity of the diatomic Toda lattice diverges
N0.35, just like the FPU chain. This divergence is generic
the 1D momentum preserving systems, due to the long-t
tails in the Green-Kubo integrands. Only the systems wh
the total momentum does not preserve and the 3D fluids
expected to have the finite thermal conductivities in the th
modynamic limit.

However, the quantitative conditions are still unclear f
the existence of temperature gradients, aside from the ch

y.
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of the heat bath model. Nonintegrability itself is the nec
sary condition. Quantitative study of the transport proces
from the viewpoint of dynamical systems must be the m
focus of the future problem.
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